EconPapers    
Economics at your fingertips  
 

Image encryption algorithm based on butterfly module and chaos

Yong Zhang

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 232, issue C, 382-407

Abstract: Image information security is a hot research area in cryptography after text encryption research. To effectively secure digital images, a practical and graceful new image encryption algorithm was proposed in this paper. Firstly, four substitution boxes (S-boxes) are constructed based on the method of generating S-box of AES. Secondly, a chaotic system with uniform probability density function is created by fusing piecewise linear map (PWLM) and Arnold cat map. The resulting system is used to produce an equivalent-key sequence of the same size as the plain image using an external secret key of length 256 bits. Thirdly, a butterfly encoding module based on the butterfly node algorithm is presented. Finally, the basic image cryptosystem based on the butterfly encoding module, the enhanced image cryptosystem with cipher-text sensitivity, and the unified image cryptosystem with identical encryption and decryption processes are sequentially studied. The performance analysis shows that the proposed image encryption systems have a time complexity of 3 and a spatial complexity of approximately 3.03, the generated cipher images are similar to noise images, and the secret key, the equivalent key, and the plain image are all extremely sensitive. Thus, the proposed cryptographies are high-speed and secure image encryption algorithms.

Keywords: Image encryption; Butterfly algorithm; S-box; Chaotic pseudo-random number generator; Information security (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:232:y:2025:i:c:p:382-407

DOI: 10.1016/j.matcom.2025.01.011

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:382-407