Inverse scattering transform for the coupled Lakshmanan–Porsezian–Daniel equations with non-zero boundary conditions in optical fiber communications
Peng-Fei Han,
Ru-Suo Ye and
Yi Zhang
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 232, issue C, 483-503
Abstract:
The challenge of solving the initial value problem for the coupled Lakshmanan–Porsezian–Daniel equations which involves non-zero boundary conditions at infinity is addressed by the development of a suitable inverse scattering transform. Analytical properties of the Jost eigenfunctions are examined, along with the analysis of scattering coefficient characteristics. This analysis not only leads to the derivation of additional auxiliary eigenfunctions but also is necessary for a comprehensive investigation of the fundamental eigenfunctions. Two symmetry conditions are discussed for studying the eigenfunctions and scattering coefficients. These symmetry results are utilized to rigorously define the discrete spectrum and ascertain the corresponding symmetries of scattering datas. The inverse scattering problem is formulated by the Riemann–Hilbert problem. Subsequently, we derive analytical solutions from the coupled Lakshmanan–Porsezian–Daniel equations with a detailed examination of the novel soliton solutions.
Keywords: Inverse scattering transform; Riemann–Hilbert problem; Non-zero boundary conditions; Coupled Lakshmanan–Porsezian–Daniel equations; Solitons (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:232:y:2025:i:c:p:483-503
DOI: 10.1016/j.matcom.2025.01.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().