Symmetry methods and multi-structure solutions for a (3+1)-dimensional generalized nonlinear evolution equation
Uttam Kumar Mandal,
Biren Karmakar,
Sukanya Dutta and
Amiya Das
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 233, issue C, 259-275
Abstract:
In this paper, we investigate a novel (3+1)-dimensional generalized Painlevè-integrable nonlinear evolution equation. Employing a dependent variable transformation, we derive the Hirota bilinear form, leading to the discovery of one, two, and three kink-soliton solutions for the equation. Furthermore, by substituting a quadratic-type test function into the Hirota bilinear form, we obtain lump solutions. Additionally, we extend our findings to include lump-multi-kink solutions using two distinct types of test functions. Furthermore, we establish two separate bilinear Bäcklund transformations using two different exchange identities, each characterized by its own set of arbitrary parameters. The first Bäcklund transformation form includes seven arbitrary parameters, while the second form features four arbitrary parameters. Our work also results in the discovery of a new exact traveling wave solution under various parametric conditions for our model. We delve into the dynamical behavior of these solutions, particularly in the long wave limit. Moreover, we explore the Lie point symmetries of our model equation, leading to the identification of new exact solutions arising from symmetry reduction.
Keywords: Hirota bilinear form; Bäcklund transformation; Lie symmetry analysis; Lump solution; Kink solution; Lump-multi-kink solution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000187
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:233:y:2025:i:c:p:259-275
DOI: 10.1016/j.matcom.2025.01.018
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().