EconPapers    
Economics at your fingertips  
 

Trajectory tracking considering model uncertainty with interconnection and damping assignment passivity-based control for electro-hydraulic servo systems

Junjie Gong, Jian Chen, Dengsheng Cai, Haibo Xie, Wei Wei and Yu Long

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 234, issue C, 194-218

Abstract: In this paper, a novel dual closed-loop control framework is proposed for trajectory tracking of electro-hydraulic servo systems, utilizing interconnection and damping assignment passivity-based control alongside a finite-time extended state observer. First, a finite-time approach, coupled with an extended state observer, is employed to estimate system model uncertainties and stochastic disturbances, achieving fast finite-time uniformly ultimately bounded stability of observation errors. Second, the nonlinear state–space model is converted into a port-controlled Hamiltonian system with disturbances. Energy shaping and damping injection methods are then applied to transform the port-controlled Hamiltonian model into the desired closed-loop system. Subsequently, the cascade characteristics of the electro-hydraulic servo system are leveraged to establish virtual inputs, facilitating the development of a dual closed-loop interconnection and damping assignment passivity-based controller. The inner-loop controller utilizes spool displacement as an input to mitigate the effects of external disturbances and enhance single-loop control performance, thereby increasing robustness against model uncertainties and external disturbances. Finally, numerical simulations validate the effectiveness and performance of the proposed control strategy in the context of trajectory tracking control for the electro-hydraulic servo system. Compared with FLSMC-MPC and Backstepping-MPC, the proposed controller improve the tracking accuracy by 61.6% and 12.4%, and the velocity tracking performance by 75.7% and 34.2%, respectively.

Keywords: Electro-hydraulic servo system; Interconnection and damping assignment passivity-based control; Trajectory tracking; Finite-time extended state observer (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:234:y:2025:i:c:p:194-218

DOI: 10.1016/j.matcom.2025.02.027

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:matcom:v:234:y:2025:i:c:p:194-218