EconPapers    
Economics at your fingertips  
 

An asymptotic approximation of the solution for nearly tridiagonal quasi-Toeplitz linear systems

Philsu Kim, Sangbeom Park, Seonghak Kim and Soyoon Bak

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 234, issue C, 359-367

Abstract: We introduce an asymptotic approximate algorithm for solving nearly tridiagonal quasi-Toeplitz linear systems. When addressing low-rank perturbations of a tridiagonal Toeplitz matrix system based on the Sherman–Morrison–Woodbury formula (or Woodbury identity), conventional methods require solving at least two simpler systems. The proposed algorithm overcomes this limitation by providing an explicit asymptotic formula for one of these systems. This asymptotic approximation enables a rapid resolution of the original system with minimal additional computation. To validate the accuracy and efficiency of the proposed algorithm, we conduct numerical experiments on two cases, comparing the results with those of existing methods. The results demonstrate that the proposed algorithm significantly reduces computation time while maintaining accuracy compared to the existing methods.

Keywords: Tridiagonal Toeplitz matrix; Thomas algorithm; LU decomposition; Sherman–Morrison–Woodbury formula (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000709
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:234:y:2025:i:c:p:359-367

DOI: 10.1016/j.matcom.2025.02.024

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:matcom:v:234:y:2025:i:c:p:359-367