EconPapers    
Economics at your fingertips  
 

An enhanced Kepler optimization algorithm with global attraction model and dynamic neighborhood search for global optimization and engineering problems

Ziyuan Liang and Zhenlei Wang

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 237, issue C, 107-144

Abstract: The Kepler optimization algorithm (KOA) is a recently proposed physics-based algorithm inspired by Kepler’s laws. Despite the strong competitiveness of KOA relative to established algorithms, it faces challenges such as limited search capability, premature convergence, and low convergence accuracy in solving complex optimization problems. To address these shortcomings, we propose an enhanced KOA (EKOA) that integrates a global attraction model, a dynamic neighborhood search operator, and a local update strategy with multi-elite guided differential mutation. Firstly, EKOA introduces an innovative global attraction model to facilitate information exchange among individuals, aiming to extend the search space and improve search efficiency. Secondly, a dynamic neighborhood search operator is designed to weaken the influence of the best individual on the current position updates, thereby mitigating premature convergence. Finally, a local update strategy with multi-elite guided differential mutation is developed to provide new evolutionary opportunities for individuals, ensure evolution in a more favorable direction, and prevent stagnation of the optimal solution during the optimization process. The performance of EKOA is evaluated by comparing it with 12 state-of-the-art algorithms using the CEC2017, CEC2020, and CEC2022 benchmark test suites. Experimental results and statistical analysis substantiate the superiority of EKOA. Additionally, the practical applicability of EKOA is demonstrated through four real-world engineering problems. In conclusion, EKOA not only effectively enhances the performance of the original KOA but also emerges as a powerful and promising algorithm for solving complex engineering problems.

Keywords: Kepler optimization algorithm; Global attraction model; Dynamic neighborhood; Differential mutation; Global optimization; Real-world engineering problems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425001338
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:237:y:2025:i:c:p:107-144

DOI: 10.1016/j.matcom.2025.04.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:matcom:v:237:y:2025:i:c:p:107-144