EconPapers    
Economics at your fingertips  
 

Representation of solutions of the one-dimensional Dirac equation in terms of Neumann series of Bessel functions

E. Roque and S.M. Torba

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 238, issue C, 568-584

Abstract: A representation of solutions of the one-dimensional Dirac equation is obtained. The solutions are represented as Neumann series of Bessel functions. The representations are shown to be uniformly convergent with respect to the spectral parameter. Explicit formulas for the coefficients are obtained via a system of recursive integrals. The result is based on the Fourier-Legendre series expansion of the transmutation kernel. An efficient numerical method for solving initial-value and spectral problems based on this approach is presented with a numerical example. The method can compute large sets of eigendata with non-deteriorating accuracy.

Keywords: Dirac equation; Neumann series of Bessel functions; Transmutation operator; Fourier-Legendre series; Spectral problems; Polynomial approximation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425002617
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:238:y:2025:i:c:p:568-584

DOI: 10.1016/j.matcom.2025.06.031

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-29
Handle: RePEc:eee:matcom:v:238:y:2025:i:c:p:568-584