Representation of solutions of the one-dimensional Dirac equation in terms of Neumann series of Bessel functions
E. Roque and
S.M. Torba
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 238, issue C, 568-584
Abstract:
A representation of solutions of the one-dimensional Dirac equation is obtained. The solutions are represented as Neumann series of Bessel functions. The representations are shown to be uniformly convergent with respect to the spectral parameter. Explicit formulas for the coefficients are obtained via a system of recursive integrals. The result is based on the Fourier-Legendre series expansion of the transmutation kernel. An efficient numerical method for solving initial-value and spectral problems based on this approach is presented with a numerical example. The method can compute large sets of eigendata with non-deteriorating accuracy.
Keywords: Dirac equation; Neumann series of Bessel functions; Transmutation operator; Fourier-Legendre series; Spectral problems; Polynomial approximation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425002617
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:238:y:2025:i:c:p:568-584
DOI: 10.1016/j.matcom.2025.06.031
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().