EconPapers    
Economics at your fingertips  
 

Discrete least square method for nonmatching mesh problems

Jae-Hoon Choi, Byung-Chai Lee and Gi-Dong Sim

Mathematics and Computers in Simulation (MATCOM), 2026, vol. 239, issue C, 1-25

Abstract: This research presents a novel algorithm designed to address nonmatching mesh problems. The key feature of the algorithm is its explicit definition of an interface force on nonmatching interfaces. The displacement at the nonmatching mesh is formulated as a function of the interface force, which is determined through the implementation of displacement continuity conditions using the least square method. Notably, this method offers simplicity and robustness, as it eliminates the necessity for integration at the nonmatching mesh. Numerical examples are provided to assess the algorithm’s performance, demonstrating its potential applicability to a wide array of problems involving nonmatching meshes, including domain decomposition and parallel computation.

Keywords: Nonmatching mesh; Interface; Least square method; Mortar method; Finite element analysis (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425002113
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:239:y:2026:i:c:p:1-25

DOI: 10.1016/j.matcom.2025.05.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-10-07
Handle: RePEc:eee:matcom:v:239:y:2026:i:c:p:1-25