Combinatorial potential of random equations with mixture models: Modeling and simulation
Wolfgang Hoegele
Mathematics and Computers in Simulation (MATCOM), 2026, vol. 239, issue C, 696-715
Abstract:
The goal of this paper is to demonstrate the general modeling and practical simulation of random equations with mixture model parameter random variables. Random equations, understood as stationary (non-dynamical) equations with parameters as random variables, have a long history and a broad range of applications. The specific novelty of this explorative study lies on the demonstration of the combinatorial complexity of these equations and their solutions with mixture model parameters. In a Bayesian argumentation framework, we derive a likelihood function and posterior density of approximate solutions while avoiding significant restrictions about the type of nonlinearity of the equation or mixture models, and demonstrate their numerically efficient implementation for the applied researcher. In the results section, we are specifically focusing on expressive example simulations showcasing the combinatorial potential of random linear equation systems and nonlinear systems of random conic section equations. Introductory applications to portfolio optimization, stochastic control and random matrix theory are provided in order to show the wide applicability of the presented methodology.
Keywords: Random equations; Likelihood; Nonlinear equations; Portfolio optimization; Stochastic control; Random matrix theory (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425002988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:239:y:2026:i:c:p:696-715
DOI: 10.1016/j.matcom.2025.07.033
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().