Retrieval of surface and atmospheric parameters from high resolution infrared sensors
Italia De Feis,
Fabio Della Rocca,
Giuliano Liuzzi,
Guido Masiello,
Pamela Pasquariello and
Carmine Serio
Mathematics and Computers in Simulation (MATCOM), 2026, vol. 239, issue C, 950-966
Abstract:
To retrieve surface and atmospheric temperature profiles, together with trace species concentrations is a fundamental challenge in numerical weather prediction and Earth monitoring. Over the last 20 years, the development of high-resolution infrared sensors on board Earth observation satellites has opened new remote sensing opportunities, providing an unprecedented source of information. However, infrared sensors cannot probe into thick cloud layers, rendering their observations insensitive to surface under cloudy conditions. This results in spatial fields flagged with missing data, disrupting the continuity of inferred information and hindering accurate modeling of energy fluxes between the surface and the atmosphere. Consequently, advanced interpolation techniques and spatial statistics are essential to process the available (very large) data sets and produce satellite products on a regular grid mesh.
Keywords: Satellite infrared sensors; Radiative transfer equation; Regularization; Spatial interpolation (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425003404
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:239:y:2026:i:c:p:950-966
DOI: 10.1016/j.matcom.2025.07.066
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().