Ultra-arithmetic I: Function data types
C. Epstein,
W.L. Miranker and
T.J. Rivlin
Mathematics and Computers in Simulation (MATCOM), 1982, vol. 24, issue 1, 1-18
Abstract:
We develop ultra-arithmetic, a calculus for functions which is performable on a digital computer. We proceed with an analogy between the real numbers and their truncated positional number representations on the one hand and functions and their truncated generalized-Fourier series on the other. Thus we lift the digital computer from a setting corresponding to the real numbers to a setting corresponding to function spaces. Digitized function data types are defined along with computer versions of the corresponding ultra-arithmetic operations (addition, subtraction, multiplication, division, differentiation and integration). Error estimates for these operations (the analogues of traditional rounding errors) are given. Explicit examples of the error estimates for the ultra-arithmetic operations are given in the cases of five specific choices of basis functions; Fourier-, Chebyshev-, Legendre-, sine- and cosine-bases. Finally the algorithms of ultra-arithmetic are given in an explicitly implementable form for the cases both of the Fourier basis and the Chebyshev basis.
Date: 1982
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475482900453
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:24:y:1982:i:1:p:1-18
DOI: 10.1016/0378-4754(82)90045-3
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().