Recent developments in transonic Euler flow over a circular cylinder
Manuel D. Salas
Mathematics and Computers in Simulation (MATCOM), 1983, vol. 25, issue 3, 232-236
Abstract:
Numerical solutions to the Euler equations for transonic flow over a circular cylinder indicate that the inviscid flow separates ahead of the rear stagnation point. Our understanding of this phenomenon and various solutions presented at a workshop on this subject are discussed.
Date: 1983
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475483900988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:25:y:1983:i:3:p:232-236
DOI: 10.1016/0378-4754(83)90098-8
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().