A review of some numerical methods for reaction-diffusion equations
J.i Ramos
Mathematics and Computers in Simulation (MATCOM), 1983, vol. 25, issue 6, 538-548
Abstract:
Some fixed-node finite-difference schemes and a finite element method are applied to a reaction-diffusion equation which has an exact traveling wave solution. The accuracy of the methods is assessed in terms of the computed steady state wave speed which is compared with the exact speed. The finite element method uses a semi-discrete Galerkin approximation. The finite-difference schemes discussed in this review include two explicit algorithms, three methods of lines, two implicit procedures, two majorant operator-splitting techniques, four time-linearization schemes and the Crank-Nicolson method. The effects of the truncation errors and linearization on the computed wave speed are determined. The application of these techniques to reaction-diffusion equations appearing in combustion theory is also discussed. The review is limited to fixed-node techniques and does not include moving or adaptive finite-difference and adaptive finite element methods.
Date: 1983
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475483901271
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:25:y:1983:i:6:p:538-548
DOI: 10.1016/0378-4754(83)90127-1
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().