Energy-based smoothing of data
Kia-Fock Loe
Mathematics and Computers in Simulation (MATCOM), 1993, vol. 35, issue 3, 271-277
Abstract:
Given a set of large noisy data, a technique which generates line segments and provides an optimal smooth connection of the line segments to form a smoothing function is proposed. In this technique data are recursively subdivided into two subsets, means of the data in each subset are computed and a line segment is defined between the means of two adjacent subsets. An energy function is defined as the sum of variances of all the subsets added with a weighted (by a weighting parameter) sum of squaring the difference of means between two adjacent subsets. Optimal connections of line segments are obtained by the simulated annealing technique. The weighting parameter is introduced in the energy function to express the relative importance of minimizing local variances of data versus the smoothness of connections of line segments. By adjusting the weighting parameter, a second optimization is obtained in the sense that the smoothing function formed by the connected line segments provides the best compromise between the closeness of data to the smoothing function and the optimal smoothness of the function.
Date: 1993
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037847549390005F
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:35:y:1993:i:3:p:271-277
DOI: 10.1016/0378-4754(93)90005-F
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().