Numerics with automatic result verification
Ulrich Kulisch and
L.B. Rall
Mathematics and Computers in Simulation (MATCOM), 1993, vol. 35, issue 5, 435-450
Abstract:
Floating-point arithmetic is the fast way to perform scientific and engineering calculations. Today, individual floating-point operations are maximally accurate as a rule. However, after only two or just a few operations, the result can be completely wrong. Computers now carry out up to 1011 floating-point operations in a second. Thus, particular attention must be paid to the reliability of the computed results. In recent years, techniques have been developed in numerical analysis which make it possible for the computer itself to verify the correctness of computed results for numerous problems and applications. Moreover, the computer frequently establishes the existence and uniqueness of the solution in this way. For example, a verified solution of a system of ordinary differential equations is just as valid as a solution obtained by a computer algebra system, which as a rule still requires a valid formula evaluation. Furthermore, the numerical routine remains applicable even if the problem does not have a closed-form solution.
Date: 1993
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037847549390042S
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:35:y:1993:i:5:p:435-450
DOI: 10.1016/0378-4754(93)90042-S
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().