On the overtraining phenomenon of backpropagation neural networks
S.G. Tzafestas,
P.J. Dalianis and
G. Anthopoulos
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 40, issue 5, 507-521
Abstract:
A very important subject for the consolidation of neural networks is the study of their capabilities. In this paper, the relationships between network size, training set size and generalization capabilities are examined. The phenomenon of overtraining in backpropagation networks is discussed and an extension to an existing algorithm is described. The extended algorithm provides a new energy function and its advantages, such as improved plasticity and performance along with its dynamic properties, are explained. The algorithm is applied to some common problems (XOR, numeric character recognition and function approximation) and simulation results are presented and discussed.
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:40:y:1996:i:5:p:507-521
DOI: 10.1016/0378-4754(95)00003-8
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().