Modeling and sensitivity analysis of neural networks
D. Lamy
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 40, issue 5, 535-548
Abstract:
This paper investigates the use of neural networks for the identification of linear time invariant dynamical systems. Two classes of networks, namely the multilayer feedforward network and the recurrent network with linear neurons, are studied. A notation based on Kronecker product and vector-valued function of matrix is introduced for neural models. It permits to write a feedforward network as a one step ahead predictor used in parameter estimation. A special attention is devoted to system theory interpretation of neural models. Sensitivity analysis can be formulated using derivatives based on the above-mentioned notation.
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:40:y:1996:i:5:p:535-548
DOI: 10.1016/0378-4754(95)00005-4
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().