A two-phase connectionist approach to invariant picture interpretation
D. Kontoravdis,
S. Kollias and
A. Stafylopatis
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 40, issue 5, 597-613
Abstract:
The paper presents an efficient two-phase approach to picture interpretation based on original connectionist techniques. During the first phase invariant representations of individual objects are obtained based on third-order image correlations and appropriate neural network classifiers are used to provide a probabilistic assignment of labels to objects. The second phase uses relationships between objects to reduce or eliminate ambiguity by means of a relaxation scheme based on stochastic learning automata. Both phases are particularly suited to parallel implementation. Simulation experiments revealed the effectiveness of our approach in solving several problems of small and medium sizes.
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000097
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:40:y:1996:i:5:p:597-613
DOI: 10.1016/0378-4754(95)00009-7
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().