EconPapers    
Economics at your fingertips  
 

Genetic algorithms for the elimination of redundancy and/or rule contribution assessment in fuzzy models

J. Zhao, R. Gorez and V. Wertz

Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 139-148

Abstract: Takagi-Sugeno fuzzy models may contain redundant rules. The use of genetic algorithms for optimizing a performance index, which combines a modelling error and the number of rules in the model, allows the elimination of redundant rules and a subsequent adjustment of the weights of the rules retained in the model. The method is illustrated by examples.

Date: 1996
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000666
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:139-148

DOI: 10.1016/0378-4754(95)00066-6

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:41:y:1996:i:1:p:139-148