Genetic algorithms for the elimination of redundancy and/or rule contribution assessment in fuzzy models
J. Zhao,
R. Gorez and
V. Wertz
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 139-148
Abstract:
Takagi-Sugeno fuzzy models may contain redundant rules. The use of genetic algorithms for optimizing a performance index, which combines a modelling error and the number of rules in the model, allows the elimination of redundant rules and a subsequent adjustment of the weights of the rules retained in the model. The method is illustrated by examples.
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:139-148
DOI: 10.1016/0378-4754(95)00066-6
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().