EconPapers    
Economics at your fingertips  
 

Neural networks for linear control: An analysis

Kevin Warwick

Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 29-37

Abstract: This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.

Date: 1996
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000569
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:29-37

DOI: 10.1016/0378-4754(95)00056-9

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:41:y:1996:i:1:p:29-37