Developments and applications of the self-organizing map and related algorithms
Jari Kangas and
Teuvo Kohonen
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 3-12
Abstract:
In this paper the basic principles and developments of an unsupervised learning algorithm, the self-organizing map (SOM) and a supervised learning algorithm, the learning vector quantization (LVQ) are explained. Some practical applications of the algorithms in data analysis, data visualization and pattern recognition tasks are mentioned. At the end of the paper new results are reported about increased error tolerance in the transmission of vector quantized images, provided by the topological ordering of codewords by the SOM algorithm.
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475496882231
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:3-12
DOI: 10.1016/0378-4754(96)88223-1
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().