EconPapers    
Economics at your fingertips  
 

Developments and applications of the self-organizing map and related algorithms

Jari Kangas and Teuvo Kohonen

Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 3-12

Abstract: In this paper the basic principles and developments of an unsupervised learning algorithm, the self-organizing map (SOM) and a supervised learning algorithm, the learning vector quantization (LVQ) are explained. Some practical applications of the algorithms in data analysis, data visualization and pattern recognition tasks are mentioned. At the end of the paper new results are reported about increased error tolerance in the transmission of vector quantized images, provided by the topological ordering of codewords by the SOM algorithm.

Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475496882231
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:3-12

DOI: 10.1016/0378-4754(96)88223-1

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:41:y:1996:i:1:p:3-12