EconPapers    
Economics at your fingertips  
 

Orthogonal considerations in the design of neural networks for function approximation

B. Francois

Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 1, 95-108

Abstract: Two problems occur in the design of feedforward neural networks: the choice of the optimal architecture and the initialization. Generally, input and output data of a system (or a function) are measured and recorded. Then, experimenters wish to design a neural network to map exactly these output values.

Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000623
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:1:p:95-108

DOI: 10.1016/0378-4754(95)00062-3

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:41:y:1996:i:1:p:95-108