A flexible neurofuzzy cell structure for general fuzzy inference
Spyros Tzafestas,
Spyros Raptis and
George Stamou
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 41, issue 3, 219-233
Abstract:
This paper presents and investigates a neural network structure which can perform general fuzzy inference. This system consists of a number of parallel neural network units which are called “flexible inference cells” (FICs). Each FIC implements a single-input/single-output (SISO) IF-THEN rule of a fuzzy knowledge base. The assumption of SISO fuzzy rules allows the implementation of any complex fuzzy inference algorithm (for control or other decision making purposes), since any MIMO (multi-input/multi-output) rule can be decomposed into an equivalent set of MISO (multi-input/single-output) rules, and a MISO rule can be decomposed to a set of SISO rules. The paper discusses the assumptions and requirements for the proposed neurofuzzy structure, and classifies the FICs into four categories. Some results derived by simulation using 3125 exemplar patterns produced computationally are provided.
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378475495000720
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:41:y:1996:i:3:p:219-233
DOI: 10.1016/0378-4754(95)00072-0
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().