EconPapers    
Economics at your fingertips  
 

Symbolic methods to construct exact solutions of nonlinear partial differential equations

Willy Hereman and Ameina Nuseir

Mathematics and Computers in Simulation (MATCOM), 1997, vol. 43, issue 1, 13-27

Abstract: Two straightforward methods for finding solitary-wave and soliton solutions are presented and applied to a variety of nonlinear partial differential equations. The first method is a simplied version of Hirota's method. It is shown to be an effective tool to explicitly construct. multi-soliton solutions of completely integrable evolution equations of fifth-order, including the Kaup-Kupershmidt equation for which the soliton solutions were not previously known. The second technique is the truncated Painlevé expansion method or singular manifold method. It is used to find closed-form solitary-wave solutions of the Fitzhugh-Nagumo equation with convection term, and an evolution equation due to Calogero. Since both methods are algorithmic, they can be implemented in the language of any symbolic manipulation program.

Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475496000535
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:43:y:1997:i:1:p:13-27

DOI: 10.1016/S0378-4754(96)00053-5

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:43:y:1997:i:1:p:13-27