Symmetries and exact solutions for a 2 + 1-dimensional shallow water wave equation
Elizabeth L. Mansfield and
Peter A. Clarkson
Mathematics and Computers in Simulation (MATCOM), 1997, vol. 43, issue 1, 39-55
Abstract:
Classical and nonclassical reductions of a 2 + 1-dimensional shallow water wave equation are classified. Using these reductions, we derive some exact solutions, including solutions expressed as the nonlinear superposition of solutions of a generalised variable-coefficient Korteweg-de Vries equation. Many of the reductions obtained involve arbitrary functions and so the associated families of solutions have a rich variety of qualitative behaviours. This suggests that solving the initial value problem for the 2 + 1-dimensional shallow water equation under discussion could pose some fundamental difficulties.
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475496000547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:43:y:1997:i:1:p:39-55
DOI: 10.1016/S0378-4754(96)00054-7
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().