Analysis of split operator methods for nonlinear and multispecies groundwater chemical transport models
D.A. Barry,
C.T. Miller,
P.J. Culligan and
K. Bajracharya
Mathematics and Computers in Simulation (MATCOM), 1997, vol. 43, issue 3, 331-341
Abstract:
Coupled solute transport and reaction models are computationally demanding when multispecies, multidimensional simulations are considered. Split operator methods provide approximate solutions to the reactive solute transport problem that are both relatively efficient to compute and to construct. The transport and reaction operators are split into two separate computational steps. Split operator methods are introduced in the context of single species sorption to the soil, with an emphasis on the splitting errors that are induced. For standard two-step methods, the splitting error is proportional to Δt, the temporal step size of the numerical scheme. The alternating split operator scheme, in which the order of the operations is switched at succeeding time steps, apparently does not remove the splitting error for nonlinear reactions, whereas it is removed for linear cases. The truncation error is extended to the case of two reacting species.
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475497000177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:43:y:1997:i:3:p:331-341
DOI: 10.1016/S0378-4754(97)00017-7
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().