Job-shop resource scheduling via simulating random operations
Dimitri Golenko-Ginzburg and
Aharon Gonik
Mathematics and Computers in Simulation (MATCOM), 1997, vol. 44, issue 5, 427-440
Abstract:
We are concerned with a problem of scheduling a flexible manufacturing cell with random time operations. A job-shop production section comprises a set of n jobs (orders) and a set of m machines (processors). Each order consists of a chain of operations, each of which needs to be executed during an uninterrupted period on a given processor. Each operation is carried out under random disturbances. For each order, its due date and the probability of meeting the deadline on time are pregiven. Orders are of different importance and a priority index has to be set for each order by the management, i.e. by practitioners who are responsible for the job-shop. Certain operations need additional resources to be delivered beforehand (equipment, experimental stations, etc.) to process these operations.
Keywords: Backwards scheduling; Chance constraint; Delivery performance; Feeding-in resources; Job-shop scheduling (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475497000748
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:44:y:1997:i:5:p:427-440
DOI: 10.1016/S0378-4754(97)00074-8
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().