Static equilibrium of hyperelastic thin shell: symbolic and numerical computation
John Cagnol and
Jean-Paul Marmorat
Mathematics and Computers in Simulation (MATCOM), 1998, vol. 46, issue 2, 103-115
Abstract:
We here examine the natural shapes of an hyperelastic thin shell called a Carpentier's joint, when the terminal position is known. More specifically we study a rectangular strip that is a flexible thin shell with a constant curvature in its width and a null curvature in its length, at its unconstrained state. We use the theory of large displacement and small strain for hyperelastic material. We first consider an appropriate parameterization of the joint. Then we compute the Green-St Venant strain tensor with a symbolic computation system and we generate the numerical code to compute the elastic energy. In particular, we make strong use of symbolic elements to resolve some problems with zero division. Numerical minimization of this energy is used to find the shape and a couple of simulation are presented.
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847549800072X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:46:y:1998:i:2:p:103-115
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().