EconPapers    
Economics at your fingertips  
 

Mathematical model of sectoring in 3D space

Eugene P. Paulo and Linda C. Malone

Mathematics and Computers in Simulation (MATCOM), 1999, vol. 49, issue 4, 285-296

Abstract: This paper describes a mathematical model used to support an in-depth simulation study that investigated a variety of sectoring methodologies intended to increase simulation efficiency in the case of autonomous moving objects in 3D space. The potential physical systems that could be represented in this fashion are airplane traffic flow, combat entities on the ground and in the air, and blood flowing in the body.

Keywords: Fixed sectoring; Dynamic sectoring; 3D autonomous objects; Sector crossings (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475499000427
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:49:y:1999:i:4:p:285-296

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:49:y:1999:i:4:p:285-296