Simulation of hydrogenated amorphous and microcrystalline silicon optoelectronic devices
Alessandro Fantoni,
Manuela Vieira and
Rodrigo Martins
Mathematics and Computers in Simulation (MATCOM), 1999, vol. 49, issue 4, 381-401
Abstract:
This paper is concerned with the modelling and simulation of amorphous and microcrystalline silicon optoelectronic devices. The physical model and its mathematical formulation are extensively described. Its numerical reduction is also discussed together with the presentation of a computer program dedicated to the simulation of the electrical behaviour of such devices. This computer program, called ASCA (Amorphous Silicon Solar Cells Analysis), is capable of simulating, on one- and two-dimensional domains, the internal electrical behaviour of multi-layer structures, homojunctions and heterojunctions under simple or complex spectra illumination and externally applied biases.
Keywords: Optoelectronics; Semiconductor device simulation; Amorphous; Microcrystalline silicon p-i-n junctions; Solar cells (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475499000555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:49:y:1999:i:4:p:381-401
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().