Multistability in a dynamic Cournot game with three oligopolists
Hamdy Nabih Agiza,
Gian Italo Bischi and
Michael Kopel
Mathematics and Computers in Simulation (MATCOM), 1999, vol. 51, issue 1, 63-90
Abstract:
The time evolution of a dynamic oligopoly game with three competing firms is modeled by a discrete dynamical system obtained by the iteration of a three-dimensional non-invertible map. For the symmetric case of identical players a complete analytical study of the stability conditions for the fixed points, which are Nash equilibria of the game, is given. For the situation of several coexisting stable Nash equilibria a numerical study of their basins of attraction is provided. This gives, evidence of the occurrence of global bifurcations at which the basins are transformed from simply connected sets into non-connected sets, a basin structure which is peculiar of non-invertible maps. The presence of several coexisting attractors (or multistability) is observed even when complex attractors exist. Two different routes to complexity are presented: one related to the creation of more and more complex attractors; the other related to the creation of more and more complex structures of the basins. Starting from the benchmark case of identical players, the effects of heterogeneous behavior of the players, causing the loss of the symmetry properties of the dynamical system, are investigated through numerical explorations.
Keywords: Discrete dynamical systems; Duopoly games; Non-invertible maps; Basins of attraction; Bifurcations (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475499001068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:51:y:1999:i:1:p:63-90
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().