Parameter identification via neural networks with fast convergence
N. Yadaiah,
L. Sivakumar and
B.L. Deekshatulu
Mathematics and Computers in Simulation (MATCOM), 2000, vol. 51, issue 3, 157-167
Abstract:
The parameter identification using artificial neural networks is becoming very popular. In this chapter, the parameters of dynamical system are identified using artificial neural networks. A fast gradient decent technique for the parameter identification of a linear dynamical system has been presented. The following concepts are used for training of neural networks while identifying the system parameters: (1) batch wise training of neural networks; (2) variable learning parameter and; (3) an intelligent check over the rate at which parameters are converging. The complete algorithm is summarized as a flow chart. A detailed mathematical formulation is given. The simulation results and a comparative study with existing method is included.
Keywords: Artificial neural networks; Parameter identification; Optimization; Supervised learning; Performance index. (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475499001147
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:51:y:2000:i:3:p:157-167
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().