Fuzzy behavior-based control trained by module learning to acquire the adaptive behaviors of mobile robots
Kiyotaka Izumi and
Keigo Watanabe
Mathematics and Computers in Simulation (MATCOM), 2000, vol. 51, issue 3, 233-243
Abstract:
Intelligent control techniques for robotic systems have been used with some success in a wide variety of applications. In this paper, we construct a method for the intelligent control system of a robot using the fuzzy behavior-based control, which decomposes the control system into several elemental behaviors, and each one is realized by fuzzy reasoning. In particular, a module learning method is investigated for obtaining each representative group behavior, so that the robot can, consequently, acquire more general knowledge or fuzzy reasoning, than a central learning method. The proposed method is applied for an obstacle-avoidance problem of a mobile robot; the effectiveness of the method is illustrated through some simulations.
Keywords: Behavior-based control; Module learning; Subsumption architecture; Genetic algorithm; Fuzzy set theory; Mobile robot (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475499001202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:51:y:2000:i:3:p:233-243
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().