Dynamics of a class of discrete-time neural networks and their continuous-time counterparts
S. Mohamad and
K. Gopalsamy
Mathematics and Computers in Simulation (MATCOM), 2000, vol. 53, issue 1, 1-39
Abstract:
The dynamical characteristics of continuous-time additive Hopfield-type neural networks are studied. Sufficient conditions are obtained for exponentially stable encoding of temporally uniform external stimuli. Discrete-time analogues of the corresponding continuous-time models are formulated and it is shown analytically that the dynamics of the networks are preserved by both continuous-time and discrete-time systems. Two major conclusions are drawn from this study: firstly, it demonstrates the suitability of the formulated discrete-time analogues as mathematical models for stable encoding of associative memories associated with external stimuli in discrete time, and secondly, it illustrates the suitability of our discrete-time analogues as numerical algorithms in simulating the continuous-time networks.
Keywords: Neural networks with time delays; Continuous-time models; Discrete-time models; Global exponential asymptotic stability; Numerical solutions (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475400001683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:53:y:2000:i:1:p:1-39
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().