EconPapers    
Economics at your fingertips  
 

A construction of higher-rank lattice rules

Timothy N. Langtry

Mathematics and Computers in Simulation (MATCOM), 2001, vol. 55, issue 1, 103-111

Abstract: Lattice rules are quasi-Monte Carlo methods for numerical multiple integration that are based on the selection of an s-dimensional integration lattice. The abscissa set is the intersection of the integration lattice with the unit hypercube. It is well-known that the abscissa set of a lattice rule can be generated by a number of fixed rational vectors. In general, different sets of generators produce different integration lattices and rules, and a given rule has many different generator sets. The rank of the rule is the minimum number of generators required to span the abscissa set.

Keywords: Diophantine approximation; Lattice rules; Cubature (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475400002500
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:55:y:2001:i:1:p:103-111

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:55:y:2001:i:1:p:103-111