Novel dynamics in the nonlinear evolution of the Kelvin–Helmholtz instability of supersonic anisotropic tangential velocity discontinuities
S.Roy Choudhury and
Kevin G. Brown
Mathematics and Computers in Simulation (MATCOM), 2001, vol. 55, issue 4, 377-391
Abstract:
A nonlinear stability analysis using a multiple-scales perturbation procedure is performed for the instability of two layers of immiscible, strongly anisotropic, magnetized, inviscid, arbitrarily compressible fluids in relative motion. Such configurations are of relevance in a variety of astrophysical and space configurations. For modes near the critical point of the linear neutral curve, the nonlinear evolution of the amplitude of the linear fields on the slow first-order scales is shown to be governed by a complicated nonlinear Klein–Gordon equation. The nonlinear coefficient turns out to be complex, which is, to the best of our knowledge, unlike previously considered cases and leads to completely different dynamics from that reported earlier. Both the spatially-dependent and space-independent versions of this equation are considered to obtain the regimes of physical parameter space where the linearly unstable solutions either evolve to final permanent envelope wave patterns resembling the ensembles of interacting vortices observed empirically, or are disrupted via nonlinear modulation instability. In particular, the complex nonlinearity allows the existence of quasi-periodic and chaotic wave envelopes, unlike in earlier physical models governed by nonlinear Klein–Gordon equations.
Keywords: Nonlinear instability; Compressible anisotropic; Quasi-periodicity; CHAOS (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475400003049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:55:y:2001:i:4:p:377-391
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().