Symbolic preprocessing for simulation of PDE models of chemical processes
R Köhler,
A Gerstlauer and
M Zeitz
Mathematics and Computers in Simulation (MATCOM), 2001, vol. 56, issue 2, 157-170
Abstract:
First principle modeling of chemical processes very often leads to a mixed system of partial differential equations (PDEs) and differential algebraic equations (DAEs) which must be preprocessed for use in standard DAE numerical simulation or optimization tools. This contribution presents the symbolic preprocessing tool SyPProT developed for the simulation environment Diva in order to apply DAE numerics also to PDEs. The method-of-lines (MOL) approach for the required PDE discretization is implemented in SyPProT by configurable finite-difference and finite-volume schemes. The model as well as the MOL parameters are represented in a tailor-made Mathematica data structure (MDS). The preprocessing of a PDE model is illustrated by the example of a circulation-loop-reactor (CLR).
Keywords: PDE process model; DAE numerics; MOL discretization; Symbolic preprocessing tool; Process simulation (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475401002877
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:56:y:2001:i:2:p:157-170
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().