Upwinding in the method of lines
Philippe Saucez,
W.e Schiesser and
Alain Vande Wouwer
Mathematics and Computers in Simulation (MATCOM), 2001, vol. 56, issue 2, 171-185
Abstract:
The method of lines (MOL) is a procedure for the numerical integration of partial differential equations (PDEs). Briefly, the spatial (boundary value) derivatives of the PDEs are approximated algebraically using, for example, finite differences (FDs). If the PDEs have only one initial value variable, typically time, then a system of initial value ordinary differential equations (ODEs) results through the algebraic approximation of the spatial derivatives.
Keywords: Method of lines; Convective systems; Upwinding approximations (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475401002889
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:56:y:2001:i:2:p:171-185
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().