EconPapers    
Economics at your fingertips  
 

Large matrix–vector products on distributed bus networks with communication delays using the divisible load paradigm: performance analysis and simulation

S.k Chan, V Bharadwaj and D Ghose

Mathematics and Computers in Simulation (MATCOM), 2001, vol. 58, issue 1, 71-92

Abstract: We present a performance analysis and experimental simulation results on the problem of scheduling a divisible load on a bus network. In general, the computing requirement of a divisible load is CPU intensive and demands multiple processing nodes for efficient processing. We consider the problem of scheduling a very large matrix–vector product computation on a bus network consisting of a homogeneous set of processors. The experiment was conducted on a PC-based networking environment consisting of Pentium II machines arranged in a bus topology. We present a theoretical analysis and verify these findings on the experimental test-bed. We also developed a software support system with flexibility in terms of scalability of the network and the load size. We present a detailed discussion on the experimental results providing directions for possible future extensions of this work.

Keywords: Divisible load; Matrix–vector product; Communication delay; Computation delay; Bus networks; Processing time minimisation (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475401003299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:58:y:2001:i:1:p:71-92

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:58:y:2001:i:1:p:71-92