Spectral method for constrained linear–quadratic optimal control
Hussein Jaddu
Mathematics and Computers in Simulation (MATCOM), 2002, vol. 58, issue 2, 159-169
Abstract:
A computational method based on Chebyshev spectral method is presented to solve the linear–quadratic optimal control problem subject to terminal state equality constraints and state-control inequality constraints. The method approximates each of the system state variables and each of the control variables by a finite Chebyshev series of unknown parameters. The method converts the optimal control problem into a quadratic programming problem which can be solved more easily than the original problem. This paper gives explicit results that simplify the implementation of the method. To show the numerical behavior of the proposed method, the simulation results of an example are presented.
Keywords: Constrained linear–quadratic problem; Chebyshev polynomials; Spectral method (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475401003597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:58:y:2002:i:2:p:159-169
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().