A neural predictive controller for non-linear systems
Mircea Lazar and
Octavian Pastravanu
Mathematics and Computers in Simulation (MATCOM), 2002, vol. 60, issue 3, 315-324
Abstract:
Design and implementation are studied for a neural network-based predictive controller meant to govern the dynamics of non-linear processes. The advantages of using neural networks for modeling non-linear processes are shown together with the construction of neural predictors. The resulting implementation of the neural predictive controller is able to eliminate the most significant obstacles encountered in non-linear predictive control applications by facilitating the development of non-linear models and providing a rapid, reliable solution to the control algorithm. Controller design and implementation are illustrated for a plant frequently referred to in the literature. Results are given for simulation experiments, which demonstrate the effectiveness of the proposed approach.
Keywords: Control architectures; Predictive control; Neural control; Non-linear system identification; Neural network models; Neural predictors (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540200023X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:60:y:2002:i:3:p:315-324
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().