Nonstandard finite difference method by nonlocal approximation
Roumen Anguelov and
Jean M.-S. Lubuma
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 61, issue 3, 465-475
Abstract:
Two types of monotonic properties of solutions of differential equations are discussed and general finite difference schemes, which are stable with respect to these properties are investigated. Apart from being elementary stable, these schemes are also shown to preserve qualitative properties of nonhyperbolic fixed points of the differential equations. From the practical point of view, a systematic procedure based on nonlocal approximation, is proposed for the construction of qualitatively stable nonstandard finite difference schemes for the logistic equation, the combustion model and the reaction-diffusion equation.
Keywords: Nonstandard finite difference method; Nonlocal approximation; Evolution equation (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475402001064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:61:y:2003:i:3:p:465-475
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().