On the nonexistence of a Lobachevsky geometry model of an isotropic and homogeneous universe
Křı́žek, Michal and
Jana Pradlová
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 61, issue 3, 525-535
Abstract:
According to the Einstein cosmological principle, our universe is homogeneous and isotropic, i.e. its curvature is constant at any point and in any direction. On large scales, when all local irregularities are ignored, this assumption has been confirmed by astronomers. We show that there is no reasonable hyperbolic geometry model in R4 of a homogeneous and isotropic universe for a fixed time which would fit the cosmological principle. Hence, there does not exist any model in R4 of an isotropic universe which would be represented by a three-dimensional hypersurface with the Lobachevsky geometry.
Keywords: Lobachevsky and Riemannian geometry; Gauss–Kronecker curvature; Manifolds; Umbilic points; Modelling; Geometric cosmology (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475402001027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:61:y:2003:i:3:p:525-535
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().