EconPapers    
Economics at your fingertips  
 

Mixed finite element modelling of cartilaginous tissues

E.F. Kaasschieter, A.J.H. Frijns and J.M. Huyghe

Mathematics and Computers in Simulation (MATCOM), 2003, vol. 61, issue 3, 549-560

Abstract: Swelling and shrinking of cartilaginous tissues is modelled by a four-component mixture theory. This theory results in a set of coupled non-linear partial differential equations for the electrochemical potentials and the displacement. For the sake of local mass conservation these equations are discretised in space by a mixed finite element method. Integration in time by backward Euler leads to a non-linear system of algebraic equations. A subtle solution strategy for this system is proposed and tested for one-dimensional situations.

Keywords: Cartilaginous tissues; Electrochemical potentials; Mixed finite elements; Darcy; Fick; Hooke (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475402001052
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:61:y:2003:i:3:p:549-560

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:61:y:2003:i:3:p:549-560