Parallel implementation of the split-step and the pseudospectral methods for solving higher KdV equation
Jinhua Guo and
Thiab R. Taha
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 62, issue 1, 41-51
Abstract:
Numerical simulations show that higher order KdV equation under certain conditions has a self-focusing singularity, which means that the solution of the equation blows up in finite time. In this paper, two numerical schemes: the split-step Fourier transform and the pseudospectral methods are used to investigate this self-focusing singularity problem. Parallel algorithms for the proposed schemes are designed and implemented. FFTW-MPI algorithm designed by Matteo Frigo and Steven Johnson is used for parallel implementation of the discrete Fourier transform (DFT). The parallel algorithms are implemented on an SGI Origin 2000 multiprocessor computer and experiments show that a considerable speedup is attained.
Keywords: Split-step method; Pseudospectral method; KdV equation (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540200188X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:62:y:2003:i:1:p:41-51
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().