EconPapers    
Economics at your fingertips  
 

Numerical challenges in particle-based approaches for the simulation of semiconductor devices

M. Saraniti, J. Tang, S.M. Goodnick and S.J. Wigger

Mathematics and Computers in Simulation (MATCOM), 2003, vol. 62, issue 3, 501-508

Abstract: The aim of this paper is to review and discuss the most challenging aspects of the particle-based methods for simulation of charge transport in semiconductor devices. Since the early theoretical works on the Ensemble Monte Carlo (EMC) method applied to device simulation, and several successive works addressing both the physics and the numerical aspects of the EMC method, the basic algorithmic approaches have been modified to exploit the continuous improvements of both hardware and software tools. Typical examples of the algorithmic evolution are the adoption of the full band representation of the electronic structure, the so-called cellular automaton (CA), and the simulation of increasingly complex three-dimensional (3D) structures. This paper will address some of the most significant problems which are still considered open in spite of the recent technological and scientific progresses.

Keywords: Charge transport modeling; Monte Carlo; InP (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540200229X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:62:y:2003:i:3:p:501-508

DOI: 10.1016/S0378-4754(02)00229-X

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:62:y:2003:i:3:p:501-508