Hicks’ trade cycle revisited: cycles and bifurcations
Mauro Gallegati,
Laura Gardini (),
T. Puu and
I. Sushko
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 63, issue 6, 505-527
Abstract:
In the Trade Cycle, Hicks introduced the idea that endogenous fluctuations could be coupled with a growth process via nonlinear processes. To argue for this hypothesis, Hicks used a piecewise-linear model. This paper shows the need for a reinterpretation of Hicks’ contribution in the light of a more careful mathematical investigation. In particular, it will be shown that only one bound is needed to have non explosive outcome if the equilibrium point is an unstable focus. It will also be shown that when the fixed point is unstable the attracting set has a particular structure: It is a one-dimensional closed invariant curve, made up of a finite number of linear pieces, on which the dynamics are either periodic or quasi-periodic. The conditions under which the model produces periodic or quasi-periodic trajectories and the related bifurcations as a function of the main economic parameters are determined.
Keywords: Business cycle models; Piecewise-linear maps; Tongues of periodicity; Bifurcation diagram (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475403000600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:63:y:2003:i:6:p:505-527
DOI: 10.1016/S0378-4754(03)00060-0
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().