Parallel computation of natural convection in trapezoidal porous enclosures
B.V. Rathish Kumar and
Bipin Kumar
Mathematics and Computers in Simulation (MATCOM), 2004, vol. 65, issue 3, 221-229
Abstract:
In this study, coupled non-linear partial differential equations governing the natural convection from an isothermal wall of a trapezoidal porous enclosure have been solved numerically by finite element method (FEM) in conjunction with GMRES, a Krylov subspace based solver. In view of the enormous amount of computation, a parallel numerical algorithm for incomplete LU-conjugate gradient (ILU-CG) solver on eight-noded ANUPAM cluster under MIMD paradigm based on ANULIB message passing library has been developed. Parallel computations have been carried out for various values of flow and geometric parameters both under Darcian and non-Darcian assumptions on the porous model. Cumulative heat fluxes and Nusselt number (Nu) associated with convection process are presented through computer generated plots.
Keywords: Parallel computation; Natural convection; Porous enclosure; Finite element method; ILU-CGM (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475403002349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:65:y:2004:i:3:p:221-229
DOI: 10.1016/j.matcom.2003.12.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().