Monte Carlo modeling of spin FETs controlled by spin–orbit interaction
Min Shen,
Semion Saikin,
Ming-C. Cheng and
Vladimir Privman
Mathematics and Computers in Simulation (MATCOM), 2004, vol. 65, issue 4, 351-363
Abstract:
A method for Monte Carlo simulation of 2D spin-polarized electron transport in III–V semiconductor heterojunction (FETs) is presented. In the simulation, the dynamics of the electrons in coordinate and momentum space is treated semiclassically. The density matrix description of the spin is incorporated in the Monte Carlo method to account for the spin polarization dynamics. The spin–orbit interaction in the spin FET leads to both coherent evolution and dephasing of the electron spin polarization. Spin-independent scattering mechanisms, including optical phonons, acoustic phonons and ionized impurities, are implemented in the simulation. The electric field is determined self-consistently from the charge distribution resulting from the electron motion. Description of the Monte Carlo scheme is given and simulation results are reported for temperatures in the range 77–300K.
Keywords: Spintronics; Spin orbit; FET; Monte Carlo (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475404000229
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:65:y:2004:i:4:p:351-363
DOI: 10.1016/j.matcom.2004.01.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().