Parallel runs of a large air pollution model on a grid of Sun computers
V.N. Alexandrov,
W. Owczarz,
P.G. Thomson and
Z. Zlatev
Mathematics and Computers in Simulation (MATCOM), 2004, vol. 65, issue 6, 557-577
Abstract:
Large-scale air pollution models can successfully be used in different environmental studies. These models are described mathematically by systems of partial differential equations. Splitting procedures followed by discretization of the spatial derivatives lead to several large systems of ordinary differential equations of order up to 80 millions. These systems have to be handled numerically at up to 250,000 time-steps. Furthermore, many scenarios are often to be run in order to study the dependence of the model results on the variation of some key parameters (as, for example, the emissions). Such huge computational tasks can successfully be treated only if: (i) fast and sufficiently accurate numerical methods are used and (ii) the models can efficiently be run on parallel computers.
Keywords: Air pollution modelling; Partial differential equations; Ordinary differential equations; Numerical methods; Cache utilization; Parallel computations (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475404000473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:65:y:2004:i:6:p:557-577
DOI: 10.1016/j.matcom.2004.01.022
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().